Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online lexicon:

Disturbed Linear System


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

A typical application of Banach's fixed point theorem is a perturbed linear system

$\displaystyle Ax + \varepsilon f(x) = b
$

with an invertible matrix $ A$ and a Lipschitz continuous function $ f$ (Lipschitz constant $ c_f$). For computing the solution $ x$, we use the iteration

$\displaystyle x \leftarrow g(x) = A^{-1}(b-\varepsilon f(x))
\,,
$

and, to prove convergence, we verify the hypotheses of Banach's fixed point theorem for the closed set

$\displaystyle D=\{y:\ \Vert y-p\Vert\le r\},\quad p=A^{-1} b
\,.
$

(i)     
$ g(D)\subset D$: For $ x\in D$,

$\displaystyle \Vert g(x)-p\Vert = \varepsilon \Vert A^{-1}f(x)\Vert
\le \varepsilon \Vert A^{-1}\Vert \max_{y\in D} \Vert f(y)\Vert
\,.$

Hence, $ g(x)\in D$ (distance to $ p$ $ \le r$) if

$\displaystyle \varepsilon \le
\frac{r}{\Vert A^{-1}\Vert \max_{y\in D} \Vert f(y)\Vert}
\,.
$

(ii) Contraction:
The estimate

$\displaystyle \Vert g(x)-g(y)\Vert = \varepsilon \Vert A^{-1}(f(x)-f(y)\Vert
\le \underbrace{\varepsilon \Vert A^{-1}\Vert c_f}_{c} \Vert x-y\Vert
$

shows that $ g$ is contractive, if $ c<1$, i.e., if

$\displaystyle \varepsilon < \frac{1}{\Vert A^{-1}\Vert c_f}
\,.
$

Both conditions ((i) und (ii)) are satisfied if $ \varepsilon$ is sufficiently small.


[Links]

  automatisch erstellt am 22.  9. 2016