Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Complex Resistance in A.C. Networks

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

For the analysis of linear a.c. networks (alternating current network) it is advantageous to use polar coordinates. With the voltage $ U$ and the current $ I$ given as

$\displaystyle U(t) = U_0 e^{\mathrm{i}(\omega t+\varphi)}\,, \quad
I(t) = I_0 e^{\mathrm{i}(\omega t+\psi)}\,,

the complex resistance

$\displaystyle Z = U(t)/I(t)

is independent of time. For the basic elements

resistor $ R$   coil $ L$   capacitor $ C$        
\includegraphics[width=.2\moimagesize]{komplexe_zahlen_schaltelement_widerstand.eps}      \includegraphics[width=.2\moimagesize]{komplexe_zahlen_schaltelement_induktivitaet.eps}      \includegraphics[width=.2\moimagesize]{komplexe_zahlen_schaltelement_kapazitaet.eps}        
$ Z=R$   $ Z=\mathrm{i}\omega L$   $ Z=(\mathrm{i}\omega C)^{-1}$        
the complex resistances are added when elements are serially connected:

$\displaystyle Z_{\text{total}} = Z_1 + Z_2

On the other hand, when elements are connected in parallel, the resistance is calculated as the sum of their reciprocals:

$\displaystyle \frac{1}{Z_{\text{total}}} = \frac{1}{Z_1} + \frac{1}{Z_2}
\quad \Rightarrow \quad
Z_{\text{total}}=\frac{Z_1 Z_2}{Z_1+Z_2}\, .

$ \operatorname{Re} Z$ is referred to as effective resistance, $ \operatorname{Im} Z$ as reactance, and $ \vert Z\vert$ as impedance.


As an example, the (total) resistance of the circuit, shown in the figure, is

$\displaystyle Z_{\text{total}}=\mathrm{i}\omega L+
\frac{R(\mathrm {i}\omega C...
{i}\Omega}\approx (92.31 -38.46\mathrm{i})\Omega \,.

Moreover, with an a.c. voltage of $ U_{\text{effective}}=220$V,

$\displaystyle I_{\text{effective}}=\frac{U_{\text{effective}}}{\vert Z\vert}=\frac{220\mathrm{V}}{100\Omega}=2.2\mathrm{A}

is the effective current.
(Authors: Höllig/Wipper/Abele)


  automatically generated 5/ 5/2011