Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon: Annotation to

Mean Value Theorem


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

For a continuously differentiable function $ f$, there exists $ t \in (a,b)$ with

$\displaystyle f(b)-f(a) = f^\prime(t)(b-a)
\,.
$

\includegraphics[width=0.6\linewidth]{mittelwertsatz}

The geometric interpretation of this identity is that the tangent at $ t$ is parallel to the secant connecting the points $ (a,f(a))$ and $ (b,f(b))$. This suggests the alternative notation $ \Delta y = f^\prime(t)\Delta x$ for describing the mean value theorem.


The function

$\displaystyle g(x)= f(x)- f(a) - \frac{f(b)-f(a)}{b-a}(x-a)
$

vanishes at $ x=a$ and $ x=b$. Since $ f$ is continuously differentiable, by Rolle's theorem, there exists $ t \in (a,b)$ with

$\displaystyle 0 = g^\prime(t)$ $\displaystyle = f^\prime(t) - \frac{f(b)-f(a)}{b-a}$    

i.e.


$\displaystyle f(b)-f(a)$ $\displaystyle = f^\prime(t)(b-a) \,.$    


[Back]

  automatisch erstellt am 14.  6. 2016