Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon: Annotation to

Parallelepidial Product

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

The parallelepidial product, except for the sign,

$\displaystyle \bigl[\vec{a},\vec{b},\vec{c}\bigr] =
 = a_1(b_2c_3-b_3c_2)+a_2(b_3c_1-b_1c_3)+a_3(b_1c_2-b_2c_1)$    

yields the volume of the parallelepiped spanned by the three vectors $ \vec{a}$ , $ \vec{b}$ , $ \vec{c}$ .
Using the $ \varepsilon$ -tensor the parallelepidial product can be expressed as

$\displaystyle \bigl[\vec{a},\vec{b},\vec{c}\bigr]=\sum_{i,j,k=1}^3 \varepsilon_{i,j,k} a_i
b_j c_k\,.

(temporary unavailable)


  automatisch erstellt am 19.  8. 2013